

A INTERFACE ENTRE OS PLANOS MUNICIPAIS DE SANEAMENTO BÁSICO E OS RECURSOS HÍDRICOS

Preparatório da Engenharia e da Agronomia para o 8º Fórum Mundial da Água

Campinas/SP 22 de Março de 2017

Lei 11.445 de 05 de Janeiro de 2007 e Decreto nº 7.217 de 21 de Junho de 2010.

Art. 9°. O titular dos serviços formulará a respectiva política pública de saneamento básico.

Art. 19. A prestação de serviços públicos de saneamento básico observará plano, que poderá ser específico para cada serviço, o qual abrangerá, no mínimo:

Abastecimento de Água, Esgotamento Sanitário, Limpeza Urbana e Manejo de Resíduos Sólidos (Lei nº 12.305/10) e Drenagem e Manejo de Águas Pluviais Urbanas.

- Art. 47. O controle social dos serviços públicos de saneamento básico poderá incluir a participação de órgãos colegiados de caráter consultivo, estaduais, do Distrito Federal e municipais, assegurada a representação:
- I dos titulares dos serviços;
- II de órgãos governamentais relacionados ao setor de saneamento básico;
- III dos prestadores de serviços públicos de saneamento básico;
- IV dos usuários de serviços de saneamento básico;
- V de entidades técnicas, <u>organizações da sociedade civil</u> e de defesa do consumidor relacionadas ao setor de saneamento básico.

- I Elaboração do diagnóstico da situação e de seus impactos nas condições de vida.
- II Objetivos e metas de curto, médio e longo prazos para a universalização do saneamento.
- III Programas, projetos e ações necessárias para atingir os objetivos e as metas.
- IV Ações para emergências e contingências, e
- V Mecanismos e procedimentos para a avaliação sistemática da eficiência e eficácia das ações programadas.

INTERFACE COM O SISTEMA DE ABASTECIMENTO DE ÁGUA

I - Elaboração do diagnóstico da situação e de seus impactos nas condições de vida.

A elaboração do diagnóstico bem detalhado irá possibilitar a identificação de desconformidades, que afetam diretamente no volume de água captado do manancial.

As ações que serão determinadas pelos objetivos e metas de curto, médio e longo prazo, terão como consequência a <u>redução</u> de perdas físicas de água nos sistemas de captação, produção e <u>distribuição de água</u>.

Perdas de água dificultam o avanço do saneamento básico e agravam o risco de escassez hídrica no Brasil

Esta é a constatação do estudo do Instituto Trata Brasil (2013) "Perdas de água: entraves ao avanço do saneamento básico e riscos de agravamento à escassez hídrica no Brasil", desenvolvido pelos Profs. Drs. Rudinei Toneto Jr, da USP-Ribeirão Preto e Carlos Saiani, do Instituto Mackenzie.

CONCLUSÕES DO ESTUDO

As perdas de água representam um dos maiores desafios e dificuldades para a expansão das redes de distribuição de água no Brasil. A perda financeira com a água produzida e não faturada faz com que o setor do saneamento perca recursos financeiros fundamentais também para a expansão do esgotamento sanitário no país.

Estas perdas financeiras derivam da água produzida, mas que não consegue ser cobrada do usuário por problemas técnicos, de ineficiência na gestão, entre outros.

CONCLUSÕES DO ESTUDO

As perdas financeiras são derivadas de <u>ligações clandestinas</u>, roubos de água, problemas e/ou falta de hidrantes e de medição em geral, sub-medições e, sobretudo, dos vazamentos que ocorrem por <u>sobre pressão</u> nas redes em horários de baixa demanda, por <u>corrosão e/ou idade avançada</u> das redes de distribuição, uso de materiais inadequado ou fora dos padrões técnicos, obras mal executadas, entre outros.

Para a elaboração do PMSB o diagnóstico deverá ser minucioso com relação a:

- 1 Capacidades e potencias dos conjuntos motorbomba;
- 2 Situação física e capacidade dos painéis elétricos;
- 3 Vazamentos em conexões e nas estruturas de concreto;
- 4 Velocidades dos Floculadores e Decantadores em função da qualidade da água bruta;
- 5 Situação do leito filtrante e
- 6 Situação da(s) outorga(s).

- Abastecimento de água
 - Captação Superficial - Motores e Bombas

- AduçãoTubulações – Incrustações

- Estações de Tratamento de Água Decantadores – Acúmulo de Iodo

- Estações de Tratamento de Água Decantadores – Acúmulo de Iodo

- Estações de Tratamento de Água Filtros - Comatação do leito filtrante

- Estações de Tratamento de Água REÚSO – Água de lavagem de filtros e decantadores

- Estações de Tratamento de Água Reúso – Água de lavagem de filtros e decantadores

- Estações de Tratamento de Água Reúso – Água de lavagem de filtros e decantadores

- Sistema de distribuição Estações elevatórias de água

- Sistema de distribuição Redes de distribuição – Incrustações

Sistema de distribuição Redes de distribuição – Fadiga do material

Sistema de distribuição Redes de distribuição – Ligações prediais

- Sistema de distribuição Redes de distribuição – Ligações clandestinas

- Sistema de distribuição Redes de distribuição – Controle de perdas físicas de água.

Controle de pressão Norma 10,00 a 50,00 mca

Intermitências

Índice de perdas de água tratada (SNIS 2015)

Região		Índice de perdas por ligação	
Regiao	Perdas na distribuição (%)	(l/dia/lig.)	
Norte	46,25	558,18	
Nordeste	45,73	362,69	
Sudeste	32,92	315,80	
Sul	33,68	277,56	
Centro-Oeste	35,53	268,59	
TOTALIZAÇÃO NACIONAL	36,70	327,02	

A média de **consumo per capita** de **água** no **Brasil** é de 165,3 litros por habitante ao dia

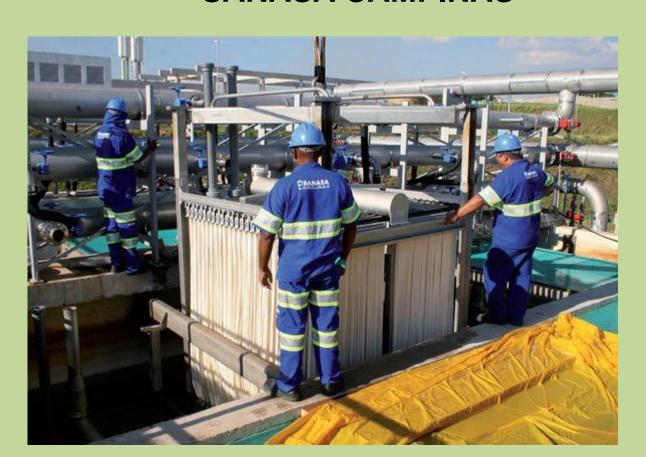
A cada 100 litros de água coletados e tratados, em média, apenas 63 litros são consumidos. (Trata Brasil)

METAS PARA O ÍNDICE DE PERDAS – PLANSAB (2013)

Д	NO	Brasil	Norte	Nordeste	Sudeste	Sul	Centro Oeste	
2	2010	39	51	51	34	35	34	
2	015	36,7	46,3	45,73	32,92	33,7	35,53	SNIS
2	018	36	45	44	33	33	32	
2	023	34	51	51	32	32	31	
2	033	31	33	33	29	29	29	

Obs: Meta dos Comitês das Bacias Hidrográficas do PCJ para o ano de 2025 – 20,00%

INTERFACE COM O SISTEMA DE COLETA, AFASTAMENTO E TRATAMENTO DE ESGOTOS


Estação de Produção de Água de Reúso EPAR-SANASA CAMPINAS

MENBRANAS FILTRANTES EPAR CAPIVARÍ II SANASA CAMPINAS

EFLUENTE TRATADO DA EPAR CAPIVARÍ II SANASA CAMPINAS

Vazão média 365 l/seg.

REÚSO PARA FINS URBANOS - EPAR

- 1 Irrigação paisagística de jardins, parques e áreas verdes
- 2 Lavagem de logradouros e outros espaços públicos e privados
- 3 Construção civil:
 - Incorporada ao concreto não estrutural
 - Cura de concreto em obras
- Umectação para compactação em terraplanagem e resfriamento de rolos compressores em pavimentação
 - Controle de poeira em obras de aterro

REÚSO PARA FINS URBANOS - EPAR

- 4 Corpo de Bombeiros
 - Utilizada no controle de incêndio
- 5 Outros fins urbanos
 - Desobstrução de galerias de água pluvial
 - Desobstrução de redes de esgotos
- Lavagem automatizada externa de veículos, caminhões de resíduos sólidos domésticos, de coleta seletiva, de construção civil, de trens e de aviões

REÚSO PARA FINS INDUSTRIAIS - EPAR

- Destinados a usos em processos, atividades e operações industriais
 - Lavagem de pátios
 - Irrigação paisagística de jardins e áreas verde
 - Reserva de incêndio

INTERFACE COM O SISTEMA DE LIMPEZA URBANA E MANEJO DE RESÍDUOS SÓLIDOS

I - Elaboração do diagnóstico da situação e de seus impactos nas condições de vida.

A elaboração do diagnóstico bem detalhado irá possibilitar a identificação de desconformidades, que afetam diretamente no volume de resíduos sólidos destinados a aterro sanitário.

Elaboração de estudo gravimétrico

As ações, tais como instalação de ecopontos, que serão determinadas pelos objetivos e metas de curto, médio e longo prazo, terão como consequência a redução do volume de resíduos recicláveis destinados aterro sanitário, que implicarão na redução do uso de água na produção de:

- Pneus
- Plásticos
- Papel e papelão
- Metais ferrosos e não ferrosos
- Vidros

INTERFACE COM O SISTEMA DE DRENAGEM E MANEJO E ÁGUAS PLUVIAIS URBANAS

I - Elaboração do diagnóstico da situação e de seus impactos nas condições de vida.

A elaboração do diagnóstico bem detalhado irá possibilitar a identificação de desconformidades, que afetam diretamente o manejo de águas pluviais urbanas.

Drenagem e manejo das águas pluviais urbanas: conjunto de atividades, infraestruturas e instalações operacionais de drenagem urbana de águas pluviais, de transporte, detenção ou retenção para o amortecimento de vazões de cheias, tratamento e disposição final das águas pluviais drenadas nas áreas urbanas.

DRENAGEM URBANA

A Pesquisa Nacional de Saneamento Básico de 2008 (IBGE, 2009) levantou, em 5.204 dos 5.565 municípios brasileiros, dados sobre a ocorrência de inundações em um período de cinco anos prévios à pesquisa.

Traz também informações sobre demandas especiais por drenagem urbana para atenuação de problemas ocasionados pela ocupação em áreas não saneadas, de encostas e taludes sujeitos a deslizamento de terra, de <u>áreas de lençol freático alto</u>, encharcadas ou úmidas e <u>com ocorrência de processos erosivos</u> no solo urbano, entre outros.

(PLANSAB 2013)

O diagnóstico deverá ser minucioso com relação a:

- 1 Existência de Plano Diretor de Micro e Macro Drenagem;
- 2 Existência na prefeitura de estrutura para gerenciamento e manutenção (preventiva e corretiva) do sistema de drenagem urbana;
- 3 Legislação específica com relação à impermeabilização do solo e
- 4 Existência de Avenidas Sanitárias.

A implementação dos Planos Municipais de Saneamento Básico irão propiciar em curto prazo um melhora exponencial na qualidade e quantidade dos recursos hídricos disponíveis atualmente, em especial nos grandes centros urbanos.

MUITO OBRIGADO

Neiroberto Silva nsengenharia@uol.com.br