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RESUMO: A agricultura é fundamental para humanidade. As práticas agrícolas são altamente 

dependentes de fatores climáticos. A cultura do milho (Zea mays L.) é uma das principais culturas que 

representa o agronegócio. O clima pode afetar a agricultura de várias formas, incluindo a maior ou 

menor severidade de doenças e insetos praga. Dentre as doenças do milho destaca-se o enfezamento 

pálido, causado pela bactéria Spiroplasma kunkelii sp. Atualmente essa bactéria causa grande perda 

em países produtores de milho. Diante desse cenário, este trabalho tem como proposta elaborar um 

modelo de nicho ecológico usando o software MaxEnt para identificar o potencial de distribuição 

global de Spiroplasma Kunkelii sp. 

PALAVRAS-CHAVE: Maxent, Modelagem de Nicho Ecológico, Enfezamento pálido do milho, 

Modelagem de Distribuição de Espécies,  

 

SPATIOTEMPORAL CHANGE IN GEOGRAPHICAL DISTRIBUTION OF GLOBAL 

CLIMATE TO SPIROPLASMA KUNKELII IN ZEA MAYS 
 

ABSTRACT: Agriculture is fundamental to humanity. Agricultural practices are highly dependent on 

climatic factors. The corn crop (Zea mays L.) is one of the main crops that represent agribusiness. The 

climate can affect agriculture in several ways, including the greater or lesser severity of diseases and 

pest insects. Among the corn diseases, corn stunt spiroplasma caused by the bacterium Spiroplasma 

kunkelii sp. stands out. Currently, this bacterium causes a great loss in corn-producing countries. 

Given this scenario, this work proposes to develop an ecological niche model using MaxEnt software 

to identify the global distribution potential of Spiroplasma Kunkelii sp. 

KEYWORDS: Maxent, Ecological Niche Modelling, Corn Stunt Spiroplasma, Species Distribution 

Modelling. 

 

 

 

 

 

 

 

 

 

 



INTRODUTION 

Zea mays L. is an important crop representing the planet's agriculture (Abdoulaye et al., 2018). 

The culture is adequate on almost every continent (Zhang et al., 2020). The occurrence of pests and 

climate change are limiting factors in production (Ali et al., 2020a). Corn faces a series of threats and 

diseases throughout its phenological phase. The production suffers from 130 different pests and about 

110 diseases caused by fungus, bacteria, and viruses worldwide (Pratap and Kumar 2014); 

consequently, the use of pesticides in the world for phytosanitary control in maize crops exceeds 

US$36 million annually. (FAOSTAT, 2017). 

Controlling diseases is essential to maintain good production rates. In Brazil, expenditures for 

disease control can reach up to 22 million dollars a year (Center for Advanced Studies in Applied 

Economics – Cepea 2019). The pale corn stun, a disease caused by the Spiroplasma kunkelii sp., 

manifests itself after flowering, mainly in the grain filling stage of maize. For example, in the state of 

Paraná - BR, a potential loss caused by S. kunkelii sp. exceeded 16.5 million dollars in losses for corn 

producers (Oliveira et al., 2003). 

The leafhopper Dalbulus maidis is the vector-insect of S. kunkelii, the causal agent of pale 

stunted maize. Corn is the only host for this leafhopper and this pathogen. Climate affects the entire 

life cycle of pathogen and host (Agrios, 2005). Climatic factors can favor the occurrence of epidemic 

outbreaks of stunting, causing large areas and causing damage (Ali et al., 2020). Climate influences 

the spatial distribution of plant diseases. The main factors limiting the growth and development of 

diseases and their vectors are temperature and rainfall (J. Bailey-Serres et al., 2019). Climate change is 

considered one of the main considerations for global biodiversity in the 21st century (Dawson et al., 

2011). The climatic factor is the most important in determining the range of species distribution. Thus, 

global heat will cause not considered distribution pattern and physiological and ecological 

characteristics of species (Bellard et al., 2012; Guan et al., 2018). 

Therefore, understanding the relationship of climate with the disease caused by Spiroplasma 

Kunkelii is essential for monitoring stunted pale. Weather information is easy and free to access. 

Species information, on the other hand, can be specific from ecological niche models. These models 

are key ecological research tools and include CLIMEX (Kriticos et al., 2015), GARP (Stockwell and 

1999), MaxEnt (West et al., 2016), BIOCLIM (Booth et al., 2014), and DOMAIN models (Carpenter 

et al., 1993). These tools can be used to predict the effect of climate change on species distribution 

(Booth, 2018). MaxEnt has often been the most used (West et al., 2016; Yi et al., 2017) as this model 

generates satisfactory results (Koch et al., 2017; Phillips et al., 2017) with accurate devas to identify 

geographic distributions of species for a variety of applications in ecology and conservation (Graham 

et al. 2004). 

In this scenario, the present work aimed to develop an ecological niche model to identify a 

potential current distribution of Spiroplasma kunkelii on a global scale. 

 

MATERIAL AND METHODS 

 The occurrence data of Spiroplasma kunkelii present in the corn crop were collected in 

different searches in the literature, blogs, news, and videos. Thus, a total of 196 points were found. 

 Initially, we used 19 bioclimatic variables for the WorldClim version 2.1 dataset released in 

January 2020 (https://www.worldclim.org). All variables have a spatial resolution equal to 2.5 arc-min 

(~5km) (Fick and Hijmans, 2017). We used the SDM tool toolbox 2.4 (Brown, et al., 2017) in ArcGIS 

software to remove variables with high correlation (r≥ | 0.70 |), and only one variable per group with 

strong correlation was specified based on the coefficient Pearson correlation (Rank et al., 2020; Kumar 

et al., 2014). Thus, the predictor variables used in the final model were: BIO1 = Mean Annual 

Temperature; BIO2 = Mean diurnal range (monthly average (Max. temp. - Min. temp.); BIO4 = 

Temperature seasonality (standard deviation × 100); BO5 = Maximum temperature of the warmest 

month; BIO10 = Mean temperature of the warmest quarter; BIO12 = Annual precipitation. 

 The Maximum Test Sensitivity Plus Specificity (MTSPS) threshold, considered simple and 

effective and at least as good as other more complicated approaches (Liu et al., 2005), was chosen to 

extract from the predictive model four suitability class for S. kunkelii (highly unsuitable: 0-MTSPS; 

low: MTSPS-0.5; medium: 0.5–0.7 and high: 0.7–1.0). 

 To start the model, a file containing the corn stunting distribution data (“sample”) and the set 

of 6 bioclimatic (predictors) variables were manually provided as input to MaxEnt (Phillips et al. 

2006).  

 



RESULTS AND DISCUSSION 

 A total of 196 known occurrence points of the S. Kunkelii bacterium were found worldwide, 

as shown in Figure1. 

Figure 1. Current occurrence of Spiroplasma Kunkelii on a global scale. 

 
 Based on the tenfold cross-validation, this model exceeded a random distribution, had an AUC 

value of 0.967 (Figure 2). The annual precipitation (56,5%), Mean Diurnal Range (12%), and Annual 

Mean Temperature (9.7%) contributed more than 78% to the results of the projections for pale stunting 

(percentages in parentheses).The Jackknife test identified the environmental variables that most 

influenced the distribution of the pest. The environmental variable with the greatest gain in the model, 

when used alone, was BIO1 = Mean Annual Temperature, which therefore seems to have the most 

useful information on its own. The environmental variable that makes the most gain when omitted for 

a BIO2 = Mean Diurnal Range. Values are averages over replicated runs (Figure 2). 

 
Figure 2. Jackknife test result for the variables used. 

 
 

In Figure 3, it is observed that, in general, the Midwest, South, and Southeast of Brazil have 

high suitability for the pest. Furthermore, some regions in southern Africa and few points in Asia are 

also beyond this suitability. States such as Acre, Mato Grosso, Goiás, Minas Gerais, Rio de Janeiro, 

São Paulo, Mato Grosso do Sul, Santa Catarina, Paraná, and Rio Grande do Sul; and as countries 

Argentina, Uruguay, Guatemala, El Salvador, Mexico, USA, Guinea, Sierra Leone, Liberia, Nigeria, 

Cameroon, Angola, Ethiopia, Zambia, Zimbabwe, Malawi, Tanzania and Mozambique young suitable 

for the Spiroplasma bacteria (Figure 3). 
Figure 3. Class of suitability to Spiroplasma kunkelii under current climatic conditions using the 

MaxEnt model. 

 

 

 

 

 

 

 

 

 

 

 



The probability of the presence of Spiroplasma Kunkelii was higher in areas with an annual 

mean temperature of 19ºC (Figure 4a) and annual precipitation of around 1850 mm (Figure 4b). The 

more distances of 19ºC and 1850mm, the smaller the probabilities of S. Kunkelii in these areas. 

 

Figure 4. Response curves of the best predictors of Spiroplasma kunkelii. 

 
 

CONCLUSION 

The corn-producing regions in the world that present a mean annual temperature of around 19 

° C and complete near 1850 mm have, in general, greater potential for the occurrence of Spiroplasma 

kunkelii. 
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